Prefix transpositions on binary and ternary

strings

Amit Kumar Dutta, Masud Hasan, M. Sohel Rahman

Department of Computer Science & Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

Abstract: The problem of Sorting by Prefix Transpositions asks for the minimum number of prefix
transpositions required to sort the elements of a given permutation. In this paper, we study a variant of
this problem where the prefix transpositions act not on permutations but on strings over an alphabet of
fixed size. Here, we determine the minimum number of prefix transpositions required to sort the binary
and ternary strings, with polynomial time algorithms for these sorting problems.

Keywords: prefix transposition, ternary strings, binary strings, genome rearrangement

1 Introduction

The transposition distance between two permutations
(and the related problem of sorting by transposition) is
used to estimate the number of global mutations between
genomes and can be used by molecular biologists to infer
evolutionary and functional relationships. A transpo-
sition involves swapping two adjacent substrings of the
permutation. In a prefix transposition, one of them must
be a prefix. Sorting by prefix transposition is the prob-
lem of finding the minimum number of prefix transposi-
tions needed to transform a given permutation into the
identity permutation. In the literature, other interesting
problems include sorting by other operations like rever-
sals, prefix reversals, block interchange etc.

A natural variant of the aforementioned sorting prob-
lems is to consider them not on permutations but on
strings over fixed size alphabets. This shift is inspired
by the biological observation that multiple “copies” of
the same gene can appear at various places along the
genome [4]. Indeed, recent works by Christie and Irv-
ing [2], Radcliffe et al. [5] and Hurkens et al. [4] ex-
plore the consequences of switching from permutations
to strings. Notably, such rearrangement operations on
the strings have been found to be interesting and im-
portant in the study of orthologous gene assignment [,
especially if the strings have only low level of symbol
repetition.

Chen et al. [1], presented for both reversals and trans-
positions, polynomial-time algorithms for computing the
minimum number of operations to sort a given binary
string. They also gave exact constructive diameter re-
sults on binary strings. Radcliff et al. [5] on the other
hand gave refined and generalized reversal diameter re-
sults for non fixed size alphabets. Additionally, they
gave a polynomial-time algorithm for optimally sorting
a ternary (3 letter alphabet) string with reversals. Fi-
nally, Hurkens et al. [4] introduced grouping (a weaker
form of sorting), where identical symbols need only be
grouped together, while a group can be in any order. In
the sequel, they gave a complete characterization of the
minimum number of prefix reversals required to group
(and sort) binary and ternary strings.

In this paper, we follow up the work of [4] and con-
sider prefix transposition to group and sort binary and

ternary strings. Notably, as a future work in [4], the
authors raised the issue of considering other genome ar-
rangement operators. In particular, here, we find the
minimum number of prefix transpositions required to
group and sort binary or ternary strings. It may be noted
that, apart from being an useful aid for sorting, grouping
itself is a problem of interest in its own right [3].

The rest of the paper is organized as follows. In Sec-
tion [2| we discuss the preliminary concepts and discuss
some notations we use. Section [3]is devoted to grouping,
where we present and prove the corresponding bounds.
In Section[d] we present an algorithm to group the strings
and in Section [5] we classify the strings along two differ-
ent dimensions. Section[flextends the results on grouping
to get the corresponding bounds for sorting. Finally, we
briefly conclude in Section [7}

2 Preliminaries

We follow the notations and definitions used in [4], which
are briefly reviewed below for the sake of completeness.
We use [k] to denote the first k non-negative integers
{0,1,...,k —1}. A k-ary string is a string over the al-
phabet ¥ = [k]. Moreover, a string s = $183...5, of
length n is said to be fully k-ary, or to have arity k, if
the set of symbols occurring in it is [k].

A prefix transposition f(1, z,y) on string s of length
n, where 1 < z < y < (n+ 1), is an rearrangement
event that transforms s into [s[z]...s[y — 1]s[1]... s[z —
1]s[y] ... s[n]]. The prefix transposition distance d4(s) of
s is defined as the number of prefix transpositions re-
quired to sort the string. Note that, after a transposi-
tion operation is performed, the two adjacent symbols of
the corresponding string may be identical. We consider
two strings to be equivalent if one can be transformed
into the other by repeatedly duplicating (by transpos-
ing) symbols and eliminating adjacent identical symbols.
This elimination of adjacent identical symbols gives us
a reduced string, i.e., a string of reduced length and this
process is referred to as reduction. As representatives of
the equivalence classes we take the shortest string of each
class. Clearly, these are the strings where adjacent sym-
bols always differ. The process of transforming a string
into the representative string of its equivalence class is
sometimes referred to as mormalization. Therefore, the

process of normalization basically comprises of repeated
transposition and reduction.

For example, let s = bababab and we want to apply
operation f(1,3,6). Now, s[z]...s[ly—1] = s[3]...s[5] =
bab, s[1]...s[x — 1] = s[1]...s[2] = ba, s[y]...s[n] =
s[6]...s[7] = ab. Therefore, after applying the oper-
ation, we get, s = s[3]...s[b]s[1]...s[2]s[6]...s[7] =
babbaab = ba bbaa b = ba ba b = babab

A reduction that decreases the string length by
x is called an z-transposition. So, if x = 0, then we
have a 0 transposition. The above example illustrates a
2-transposition.

3 Grouping

The task of sorting a string can be divided into two
subproblems, namely, grouping the identical symbols to-
gether and then putting the groups of identical symbols
in the right order. The grouping distance d,(s) of a fully
k ary string s is defined as the minimum number of pre-
fix transposition required to reduce the string to one of
length k.

3.1 Grouping Binary Strings

As strings are normalized, only 2 kinds of binary strings
are possible, namely, 010101...010 and 101010...101.
The grouping of binary strings seems to be quite easy
and obvious. The following bound is easily achieved.

Theorem 1. (Bound for Binary strings) Let s be a fully
binary string. Then, dg(s) = ["5%].

Proof. We can always have a 2-transposition if |s| is even.
However, if |s| is odd, we need an extra 1-transposition.
So, the upper bound is dy(s) = [25%]. O

We illustrate the above result with the help of an
example. Let s = ababab. Then we can continue as fol-
lows: s = ababab = ababab = aabbab = abab = abab =
aabb = ab. Here, we need two 2-transpositions to group
this string. So, dg4(s) = 2.

3.2 Grouping Ternary Strings

In this section, we focus on ternary strings. As it seems,
grouping ternary strings is not as easy as grouping binary
strings. We start with the following theorem.

Lemma 1. In a fully ternary string, we can always per-
form a 1-transposition.

Proof. We take a ternary string s of length n > 3. Now,
we take a prefix a of length k. If a[l] occurs at the suf-
fix at position 4, we can transpose a[l]...a[i — 1] with
afi]. Then, a[l] and ali] are adjacent and we can elim-
inate one of the two. Otherwise, if a[k] occurs at the
suffix at position ¢, then we can transpose a[l]...a[k]
with alk + 1] ...a[i — 1]. Then a[k] and a[i] are adjacent
and as before, we can eliminate one of them. Since, one
of the above cases always occurs for ternary strings, the
result follows. O

3.3 Grouping distance for

strings

Ternary

The lower bound for the grouping of a ternary string re-
mains the same as that of binary strings; but, as can be
seen from Theorem 2] below, the upper bound differs. We
first give an easy but useful lemma.

Lemma 2. Suppose s[l..n] is a fully ternary string.
If we have a prefix s[1..i],1 < ¢ < n — 2 such that
s[1] = s[n — 1] and s[i] = s[n], then we have a 2-
transposition.

The proof of Lemma[2]is very easy and hence is omit-
ted.

Theorem 2. (Bound for Ternary strings) Let s be a fully
ternary string. Then, ["5%] < dy(s) < [%5%] + 1 where
n is the length of the string and k is the arity.

Proof. First we prove the lower bound. Here, £k = 3. If
we can always give a 2-transposition, then at each oper-
ation the string length is decremented by 2 and if |s| is
odd, we need an extra 1 transposition. Hence, we have
1557 < dy(s).

Let us concentrate on the upper bound. As strings
are fully ternary, we don’t need to work with n < 3.
Now, if we apply the upper bound for n = 4,5 and 6, we
have dy(s) = 2,2 and 3 respectively. It is easy to realize
that, by Lemmall] we can always satisfy the above upper
bound. Thus the upper bound is proved for n < 7.

Now we consider n > 7. In what follows, we only
consider strings starting with 1. This doesn’t lose the
generality since we can always use relabeling for strings
starting with 0 or 2. Now, note carefully that for any
string starting with 1, we can only have one of the fol-
lowing eight prefixes of length 4:

1012,1010,1021, 1020, 1201, 1202, 1210 and 1212. (1)
Here we give the tree diagram of all strings starting
with 1:

121

1210 1212

Now note that, the upper bound of Theorem [2] tells
us we can give at most three 1-transpositions when n is
even (i.e. n—k is odd) and two 1-transpositions when n
is odd (i.e. n — k is even). Note that, if we could give a
2-transposition at each step, we would get the bound of
("T’k] For a n length string, if we can give a 2 trans-
position, the resulted reduced string may start with 1, 0
or 2. For the latter two cases, we can use relabeling as
mentioned before. Therefore we can safely state that the
reduced string will have any of the 8 prefixes of List

Hence, it suffices to prove the bound considering each of
the prefixes of List [I] We will now follow the following
strategy:

We will take each of the prefixes of List
and expand it (by adding symbols) to con-
struct all possible strings of length greater
than or equal to 7. Strictly speaking,
we will not consider all possible strings;
rather we will continue to expand until
we get a 2-transposition, since afterwards,
any further expansion would also guaranty
a 2-transposition. Suppose s is one such
string. We will take s and try to give a 2-
transposition with any of its prefix. If we
succeed, then, clearly, we are moving towards
the best case and we only need to work with
the reduced string. If we can’t give a 2-
transposition, we specifically deal with s and
show that the bound holds. Now if we can
give a 2-transposition, the reduced string will
have any of the 8 prefixes (using relabeling if
needed) and we will show that all strings of
these cases will follow the bound.

Firstly it is easy to note that, the prefixes 1010
and 1212 themselves have 2-transpositions (Lemma [2]).
Therefore, we can safely exclude them from the follow-
ing discussion. In what follows, when we refer to the pre-
fixes of List [I we would actually mean all the prefixes
excluding 1010 and 1212. Now, to expand the prefixes,
if we add 10 or 12, all of them would be able to give a
2-transposition (Lemma . Therefore, in what follows,
we consider the other cases. Now we analyze each of the
prefixes below.

1012

We first give the tree diagram of all string having prefix
1012

1012

101201 101202

1012010 1012012 1012020 1012021

If we add 01, we can only add (By ‘add’ we mean ap-
pend) 0 or 2. The resulting expanded string becomes
1012010 or 1012012. In both cases, we can give a 2-
transposition. On the other hand, if we add 02, we
can add 0 or 1 next and the string becomes 1012020 or
1012021. The string 1012020 satisfies the bound as fol-
lows: 1012020 = 012020 = 012020 = 0120 = 0120 =
120. Here, n = 7 and we need only 3-transpositions hold-
ing the bound true. Now if we add 1, the string becomes
10120201. For this one as well the bound holds as follows:
10120201 = 0120201 = 0120201 = 20201 = 20201 =
201. Here, n = 8 and we needed 3-transpositions. Now,
it can be easily checked that strings like 1012020(20)* or
1012020(20)*1 the bound holds using the same strategy

as shown above. Adding anything with 1012020(20)*1
will also give a 2-transposition as follows. Clearly, we
first need to add either 0 or 2 and immediately Lemma 2]
would apply.

Now we consider 1012021. The bound holds for this
one as well as follows: 1012021 = 012020 = 012021 =
0121 = 0121 = 201. Now, strings like 1012(02)*1 can
also be handled similarly hence the bound holds for them
as well. Adding anything with 1012(02)*1 will also give
a 2-transposition (Lemma [2)).

1021

This prefix is ending with 1 and adding anything will
give a 2-transposition (Lemma .

1020

We first add 21 with this prefix. Then, adding any-
thing with 102021 will give a 2-transposition (Lemma.
Now, for 102(02)*1, we need a 1-transposition to move
the initial 1 at the end. Now the upper bound holds
because the rest of the string is binary (Theorem |I]).
Also, adding anything with 102(02)"1 will give a 2-
transposition (Lemma.

Now, if we add 20 with the prefix we get 102020.
Next we add 1 or 2 and get 1020201 or 1020202 re-
spectively. For 1020201, the bound holds as follows:
1020201 = 020201 = 020201 = 0201 = 0201 = 201.
All strings like 1020(20)*1 can also be handled similarly
and hence the bound holds for them as well. And adding
anything with 1020(20)*1 will give a 2-transposition
(Lemma [2)).

Now for 1020202, the bound holds as follows:
1020202 = 210202 = 210202 = 2102 = 2102 = 102.
Now, string like 10202(02)" can be handled similarly and
hence the bound holds. For 10202(02)"1, we need a 1-
transposition to move the initial 1 at the end. Now the
upper bound holds because the rest of the string is binary
(Theorem [1). Also adding anything with 10202(02)*1
will give a 2-transposition (Lemma .

1201

This prefix is ending with a 1 and adding anything will
give a 2-transposition (Lemma [2).

1202

Here, we can employ relabeling and map 2 to 0 and 0 to 2
to get 1020. Now recall that we have already considered
1020 before and hence we are done.

1210

Here we can again employ relabeling and map 2 to 0 and
0 to 2 to get 1012. And since we have already considered
1012, we are done.

This completes the proof. O

4 Algorithm to group fully binary
and ternary strings

Algorithm 1:
(s:input string)

GroupByPrefixTransposition

Input: s, a fully binary or ternary string
initialization;
k < 2 if s is binary;
k < 3 if s is ternary;
count <= 0;
twoTranspDone < false;
while | s[>k do
fori=1;i<|s|;i=i+1do
take the first symbol of input string ;
take the i*" symbol of the input string ;
append these two symbols ;
call this string temp ;
check whether this string is a substring of
the current suffix ;
forj=i+1;5<(|s|-1);j=j+1do
take the substring named consecutive
of input string from j to j + 2 ;
if consecutive == temp then
perform a 2-transposition ;
count < count + 1 ;
twoTranspDone < true ;
break ;
end

end

if twoTranspDone == false then
perform a 1-transposition using

Algorithm ;

s < return value from 2 ;
count <= count + 1 ;

end

end
twoTranspDone < false ;

end

In this section we present Algorithm [I| to group fully
binary and ternary strings which satisfies the proposed
bound. We take all possible prefixes and try to find a 2-
transposition in the suffix. If no 2-transposition is found,
the algorithm gives a 1-transposition with the current
prefix. It runs until the length is 2 and 3 for fully bi-
nary and fully ternary strings respectively. A variable
count is initialized to zero and after the algorithm runs,
it contains total number of prefix transpositions required.
Algorithm [TJuses Algorithm 2]to perform 1 transposition
(which is always available as discussed in Lemma. Al-
gorithm [2| is simple, it first checks if the first character
exists in the suffix. If so, it performs a 1-transposition.
If not, it will increase the length of prefix and checks if
the last character of the prefix exists in the suffix. If so,
it performs a 1-transposition with that prefix and suffix.

Before formally proving the correctness of our algo-
rithm, it will be useful to provide some classifications
of the fully binary and ternary strings. In the following
section, we will first classify the fully binary and ternary
strings along two different dimensions and then discuss

the correctness of our algorithm. Notably, apart from
being useful in proving the correctness of our algorithm,
the classifications provided below would be interesting in
their own right.

Algorithm 2: DolTransposition (s:input string)

Input: s is a fully binary or ternary string passed
as a parameter from Algorithm

forward < false;
take the suffix of input string leaving the initial
symbol of s;
if the first symbol exists in the suffiz then
perform a 1-transposition to s ;
forward < true ;
end
f forward == false then
forp=1L;p<(s|-1);p++do

take a string suffix, substring of input

string form (p+ 1) to end ;

if pt" symbol occurs at suffiz then

‘ perform a 1-transposition ;
end

e

end
end
return s ;

5 Classification

5.1 Classes of Ternary Strings

In this section, we will identify two classes of fully ternary
strings. We have already shown that it needs at most
("T_k] + 1 prefix transpositions to group ternary strings.
We will discuss two classes; the first one consists of the
strings which requires [25%] prefix transpositions (Class
1) and the other will need [25%] +1 (Class 2). We are
not able to classify all the fully ternary strings; however
below we provide classification of a significant number of

strings:

e All length four strings satisfy ("T_k] bound, so we
put them in Class 1.

e (10)7102, (10)*210, (10)T212, (12)*010,
(12)1012, (12)7120 belong to Class 1. We can
apply relabeling on these to find strings starting
with 0 or 2 and they also belong to Class 1.

e If a ternary string is reduced to any one of the pre-
vious strings by a series of 2-transpositions, then
that particular string also belongs to Class 1.

In Class 2, we put the strings which need ["T_k] +1
prefix transpositions to be grouped.

e 10120, 10121, 10201, 10202, 12021, 12020, 12101,
12102 and those we get applying relabeling on them
are in Class 2. There is no 2-transposition available
in these strings.

e (10)T120, (10)*121, (10)*201, (10)*2(02)%,
(12)t021, (12)T0(20)*, (12)*101, (12)*102,
(10)71201, (10)+2021, (12)+0201, (12)*+1021 and

those which we get by applying relabeling on these
strings.

e Ternary strings reduced to any of these by a series
of 2-transpositions will also be placed in Class 2.

Now, we will categorize all the fully ternary strings
from a different perspective. We call a string “Good
string” when Algorithm [1] gives optimal result. All the
strings in Class 1 and Class 2 specified earlier are “Good
strings”. There are strings for which Algorithm [1] will
not give optimal results. We name those strings as
“Hard strings”. (02)710202, (10)721010, (21)*02121 are
examples of “Hard strings”. To elaborate, let us take
a fully ternary string 0210202 as an example. Algo-
rithm [T] will give the following set of prefix transpositions:
0210202 => 10202 => 2102 => 102. Here we need
3 prefix transpositions which satisfy the bound. How-
ever, an optimal sequence will need 2 prefix transposi-
tions to group this string 0210202 => 02102 => 102.
So, 0210202 is a “Hard string”.

5.2 Correctness of Algorithm

With the above classification of the ternary strings at
our hand, we are now ready to prove the correctness of
our algorithm. We prove the following theorem:

Theorem 3. Given a fully binary and ternary string,
Algorithm[1) is always able to group satisfying the bound
gwen in Theorems [1] and [2

Proof. The proof is simple for fully binary strings be-
cause Algorithm [I| will always give optimal results for
fully binary strings. So we need only prove that Al-
gorithm [1] will always satisfy the proposed bounds for
ternary strings. Since, by definition, Algorithm [I] pro-
vides optimal results for “Good strings”, we only need
to consider “Hard strings” and prove that Algorithm
will satisfy the upper bound while dealing with the
“Hard strings”. Consider a hard string. Algorithm
may choose a 2-transposition which may not be opti-
mal. Then it will reduce the string into any one of the
followings: (10)7120, (10)*T121, (10)*201, (10)*2(02)*,
(12)*021, (12)*10(20)*, (12)*101, (12)*102, (10)*1201,
(10)*2021, (12)*0201, (12)71021 or any fully ternary
string of length 4 and those which we get by applying
relabeling any of these. These strings satisfy the upper
bound. So, overall the Algorithm [I]will satisfy the upper
bound. O

6 Sorting

The sorting distance dq(s) of a fully k£ ary string s is
defined as the minimum number of prefix transposition
required to sort the string to one of length k. We again
consider normalized strings.

6.1 Sorting Binary Strings

Theorem 4. (Bound for Binary strings) Let s be a fully
binary string. Then, dy(s) < [25%].

Proof. As binary strings have only 2 letters, after group-
ing they are already sorted (in ascending or descending
order). So, the upper bound is d(s) < [25%]. O

6.2 Sorting Ternary Strings

Theorem 5. (Bound for Ternary strings) Let s be a fully
Ternary string. Then, upper bound for sorting ternary
string is dg(s) < [%5E +2].

Proof. After grouping a ternary string, we have the fol-
lowing grouped strings: 012,021,102,120,201 and 210.
Among these, 012 and 210 are already sorted. We need
one more 0 transposition to sort 021,102,120 and 201.
Hence the result follows. O

6.3 Algorithm to sort fully binary and
ternary strings

We first apply Algorithm [I] of Section [on the in-
put string. Then, if the string is binary, it is al-
ready sorted. If it is ternary and the after group-
ing we have any one of 021,102,120 and 201, we
need 1 more prefix transposition to sort the string.

Algorithm 3: SortByPrefixTransposition (s:input
string)

Input: s is a fully binary or ternary string
)
run Algorithm [1jon s ;
if s is binary then
s is sorted after grouping ;
finish ;
nd
else
if s is in 021, 102, 120, 201 then
‘ perform one O-transposition to sort s ;
end
else
‘ s is already sorted ;
end

[¢]

end

7 Conclusion

In this paper, we have discussed grouping and sorting of
fully binary and ternary strings when the allowed oper-
ation is prefix transposition. Following the work of [4],
we have handled grouping by prefix transpositions of bi-
nary and ternary strings first and extended the results
for sorting. In particular we have proved that, for binary
strings the grouping distance is dg(s) = [25%] and for
ternary string we have [25%] < dgy(s) < [25%]+1, where
n is the length of the string and k is the arity. On the
other hand, for sorting binary and ternary strings the
sorting distance dy(s) is upper bounded by [%5£] and
(%1 + 2 respectively. As has already been mentioned,
we are now considering the higher-arity alphabets as an
extension of our work.

References [3] H. Eriksson, K. Eriksson, J. Karlander, L.J. Svens-
son, and J. Wastlund. Sorting a bridge hand. Discrete

[1] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, Mathematics, 241(1-3):289-300, 2001.
S. Lonardi, and T. Jiang. Assignment of orthologous [4] C.A.J. Hurkens, L. van lersel, J. Keijsper, S. Kelk,
genes via genome rearrangement. IEEE/ACM Trans.

L. Stougie, and J. Tromp. Prefix reversals on bi-
Comput. Biology Bioinform., 2(4):302-315, 2005.

nary and ternary strings. SIAM J. Discrete Math.,
21(3):592-611, 2007.

[2] D.A. Christie and R.W. Irving. Sorting strings by [5] A.J. Radcliffe, A.D. Scott and E.L. Wilmer Rever-
reversals and by transpositions. SIAM J. Discrete sals and transpositions over finite alphabets. SIAM
Math., 14(2):193-206, 2001. J. Discrete Math., 2006.

	Introduction
	Preliminaries
	Grouping
	Grouping Binary Strings
	Grouping Ternary Strings
	Grouping distance for Ternary strings

	Algorithm to group fully binary and ternary strings
	Classification
	Classes of Ternary Strings
	Correctness of Algorithm ??

	Sorting
	Sorting Binary Strings
	Sorting Ternary Strings
	Algorithm to sort fully binary and ternary strings

	Conclusion

